Context-Aware Converged Communications

B.H. Juang

Motorola Foundation Chair Professor & Georgia Research Alliance Eminent Scholar School of Electrical & Computer Engineering Georgia Institute of Technology

Communication Services Today – IN Perspective

Towards Converged Voice/Internet Services

Geor/gial Koziktute of Technology

Example – Multiparty Communication Services

NTT's Resonant Communication Networks

Context-Aware Communications

Architectural Evolution

CCN (Context-sensitive Converged Networks)

Network Architecture for CCN

Dimensions of Context

Sensors in the Labs at Gatech

Wireless

Georgialnstitute of Technology

Audio

Devices for Aging in Place

Multi-channel Hi-Fi Telecommunication

Sound spatialization makes talker-tracking easier in multi-party conferencing environments, resulting in improved effectiveness in communication

Binaural Hearing & Cocktail Party Effect

Spatial separation plays a role.

Compare mono de with stereo de

Stream segregation also plays a role.

 Compare one talker (m1+m2) (m1 (m2 (f2

Stereophonic Conferencing Demonstration

Multi-channel Communications

Human communication is a spatial-temporal event.

It is important to track the source objects.

Stereophonic Acoustic Echo Cancellation

Multi-channel Source Separation

One possible approach (Ikram of Gatech and Morgan of Bell Labs):

x = H s $R' = \langle x | x^H \rangle$ s' = W xFind un-mixing filter matrix W such that $\Lambda_{s'} = W R' W^H$ is diagonalized by minimizing thesquared Frobenius norm of the off-diagonal matrix of $\Lambda_{s'}$

Sound Source Localization

Time Delay Estimation Source Location Estimation

Various methods:

- triangulation solve a set of hyperbolic equations
- spherical intersection solve a set of linearized spherical equations
- spherical interpolation similar to SI, but with reduced constraint
- one-step-least-squares transforms the problem into an estimation/minimization problem; works the best

Applications:

- Conferencing with participant tracking
- Improved sound and sight pickup

Further challenge

The Content Processing Chain

Managing Content for CAC – Semantic Metadata

Communication with Region-of-Interest

ROI Algorithms for: Lossless Coding Progressive Transmission Electronic Zooming Integration with VoIP, VUI, TIVO and Array Processing Technologies

Context-Aware Content Distribution

Multimedia Transport Protocol - MMTP

UDP + FEC+ error concealment UDP+ MMTP + selective retransmission

Over-provisioning / Packet Loss Rate for Perfect Q: 7 for UDP 2 for MMTP [Theoretical Limit is 1]

Embedded and Layered Coding

Information Management & Support Layers

MetaServices

Adaptive and Customized Information Services

Context Management

Context-Aware Convergent Communications

Research Vision

- Imbue **Converging Digital Services** with the attributes and perception of personalization, flexibility, richness and privacy;
- Incorporate Context, broadly defined, into the deep fabric of wired and wireless networks for information, transactions and entertainment;
- Harness the capabilities of multimedia processing, embedded computing and pervasive broadband for Context-Aware Telecommunications;
- Spawn a new generation of applications of interest to the end user, the communications industry and society, using the exemplary test domains of tele-health, distributed education and entertainment.

Convergent & Converged Communication Networks need research advances in:

- Infrastructure for User-Centric Converged
 Services
- Context-Aware Media Processing
- Context-Aware Information Management
- The Science and Engineering of Context

