# Polarization Mode Dispersion and Its Mitigation Techniques in High Speed Fiber Optical Communication Systems

#### **Chongjin Xie**

#### **Bell Labs, Lucent Technologies**

791 Holmdel-Keyport Road, Holmdel, NJ 07733

#### WOCC'2005, April 22, 2005, Newark, NJ



# Outline

- PMD basics
- PMD impairments
- Passive PMD mitigation techniques
- Electrical equalization for PMD mitigation
- Optical PMD compensation
- Multi-channel PMDC for WDM systems

## State of Polarization

#### The polarization state of a wave describes how the electrical field oscillates.



3

# Birefringence —1<sup>st</sup>-order PMD

#### **Time domain manifestation**





 $S_3$ 

#### **Frequency domain manifestation**



4

## Random Birefringence in Fibers—All-Order PMD

**Concatenation of random birefringent sections** 



Lucent Technologies Proprietary, Use pursuant to company instruction

# Principal States of Polarization (PSP)

Two special polarization states at the fiber input: Output pulse is not distorted to 1<sup>st</sup>-order

$$\begin{cases} -Slow PSP: |p\rangle; delay = \tau_0 + \frac{1}{2}\Delta\tau \\ -Fast PSP: |p_-\rangle; delay = \tau_0 - \frac{1}{2}\Delta\tau \end{cases}$$

#### Differential group delay (DGD): DGD = $\Delta \tau$

**PMD vector**:  $\vec{\tau} = \Delta \tau \hat{p}$ 



## **PMD Drift and Variation**



H. Kogelnik et. al., OFC'02, WD

- PMD varies with wavelength and drifts with time
- Drift speed was observed to have a large range
  - Hours and days for buried fibers and undersea cables
  - millisecond or faster for aerial fibers and fibers under bridges

### PMD basics

- PMD impairments
- Passive PMD mitigation techniques
- Electrical equalization for PMD mitigation
- Optical PMD compensation
- Multi-channel PMDC for WDM systems

# PMD Induced Eye-Diagram Degradation

PMD induced pulse splitting and broadening causes ISI, which will degrade system performance.



Eye-diagram degradation of 10 Gb/s RZ and NRZ signals caused by 1<sup>st</sup> –order PMD in worst case

### System Penalty due to 1<sup>st</sup>-order PMD

For penalty less than 2 dB, 1<sup>st</sup>-order PMD can be approximated as  $\epsilon$  (dB)  $\approx A$  ( $\Delta \tau / 2T$ )<sup>2</sup> sin<sup>2</sup>  $\Theta$  (*C. D. Poole et al., IEEE PTL., vol. 3, p. 68,1991.*)



Fraction of Power in Leading Pulse (γ)

C.H.Kim et al, OFC 2002, TuI4

# Outage Probabilities Induced by PMD

- For any given system margin , there is a certain probability that the PMD induced penalty exceeds the margin, the probability is called outage probability
- □ Acceptable outage probabilities range between 10<sup>-4</sup> to 10<sup>-8</sup>



11

- PMD basics
- PMD impairments
- Passive PMD mitigation techniques
  - Refer to the techniques that do not require dynamic adjustment
- Electrical equalization for PMD mitigation
- Optical PMD compensation
- Multi-channel PMDC for WDM systems

## **Using PMD Robust Modulation Formats**



13 C. Xie, WOCC'2005

### Allocating More Margin to PMD



H. Sunnerud et al, IEEE PTL, vol. 13, p. 448, 2001

C. Xie et al, IEEE PTL, vol. 15, pp. 614, 2003.

# Using FEC and Polarization Scrambling



# FEC alone or FEC with PS at Tx cannot efficiently mitigate PMD



# FEC together with fast distributed PS can effectively reduce PMD effects

• X. Liu, et al, ECOC'04, PD paper

- PMD basics
- PMD impairments
- Passive PMD mitigation techniques
- Electrical equalization for PMD mitigation
- Optical PMD compensation
- Multi-channel PMDC for WDM systems

# **Electrical Equalizers for PMD Compensation**

- **Electrical equalization advantages**
- Low cost
- Small size
- □ Simultaneous mitigation of various ISI independent of its origin
- but not so effective due to...
- □ Lack of polarization information after detection
- □ Non-linear channel model
- □ Signal dependent noise
- □ High-speed signal processing

#### Well-known concepts:

- Transversal filter (FFE)
- Decision feed-back loop (DFE)
- Maximum Likelihood Sequence Estimation (MLSE)

# Structure of Electrical Equalizer

#### Architecture of 10 Gb/s ISI mitigator with FFE and DFE



Adaptation based on conditional error counters from FEC decoder

A. Dittrich et al, OFC'03, paper ThG5

# Effectiveness of FFE and DFE

PMD penalty for an optically pre-amplified 10 Gb/s receiver with 1-tap DFE and 8-tap FFE (transversal filter)

More effective in high penalty range



H. Bülow et al., Electron. Lett., vol. 36, p. 163, 2000.

# Electrical Equalizer @ 40Gb/s



Fig.1 5 Tap Transversal Filter-based Equalizer



Fig.2 SiGe 40Gbit/s Equalizer IC Microphotograph

- 4(8) tap feed forward / T/2-spaced analog equalizer
- No absolute Q value given
- Increases DGD tolerance from 8ps to 12ps (likely for optical duobinary)



H. Jiang et al, OFC'05, paper OWO2.

20

Lucent Technologies Pror

### PMD basics

- PMD impairments
- Passive PMD mitigation techniques
- Electrical equalization for PMD mitigation
- Optical PMD compensation
- Multi-channel PMDC for WDM systems

# Concept of Optical PMDC

The aim of optical PMDC is to construct a PMD vector that is opposite to the PMD vector of the link

Due to existence of higher order PMD, this cannot be achieved over a wide bandwidth

In principle, more stage PMDC can achieve better performance



R. Noé et al., JLT, vol. 17, p. 1602, 1999.

22

# Structure of Optical PMDC



- Compensation elements
  - one or many stages, fixed or variable delay lines
- Feedback signals
  - DOP, RF spectrum, eye-monitoring, Q factor

Summary see: J. Poirrier et al, OFC'02, WI3, C. Xie et al, IEEE PTL, vol. 17, p. 570, 2005.

Control algorithms

-Dithering method, or more efficient searching methods

### Performance of One-Stage Optical PMDC



One-stage PMDC with fixed delay line

One-stage PMDC with variable delay line

#### 1 dB margin, BER = 10<sup>-12</sup>, RF spectrum signal as feedback control

• C. Xie et al, IEEE PTL, vol. 15, p.1228, 2003.

• C. Xie et al, IEEE PTL, vol. 15, p.1168, 2003

### Effects of Feedback Signals on PMDC



1 dB margin, BER = 10<sup>-12</sup> DOP1: without filter DOP2: with 0.8R optical filter RF1: weighted RF power RF2: 0.5R RF tone

C. Xie et al., OFC'04, paper WE4

### PMD basics

- PMD impairments
- Passive PMD mitigation techniques
- Electrical equalization for PMD mitigation
- Optical PMD compensation
- Multi-channel PMDC for WDM systems
  - To reduce system cost

# Channel Switching to Mitigate PMD Effects



S. Särkimukka et al., JLT, vol. 20, p.368, 2002

27

# Multi-Channel PMDC



R. Khosravani et al., IEEE PTL, vol. 13, pp. 1370, 2001

28

## Multi-channel Shared PMDC for WDM Systems





29

# **Terapulse Multi-Channel PMDC**



### PMD Limited Distances for 40 Gb/s Systems



PMD limited transmission distances for systems with different PMD tolerances.

Assume component PMD of 0.5 ps per 100 km span.

The values in the figure are average tolerable PMD

# Summary

- Due to its stochastic nature, PMD is considered to be one of the main obstacles to the deployment of optical communication systems with bit rates of 40 Gb/s and higher.
- Many PMD mitigation techniques have been developed and demonstrated in the past decade, some of them can significantly increase the system tolerance to PMD.
- Finding cost effective PMDC solutions requires deep understanding of PMD and customer needs.
- **Currently no PMD compensation technique can eliminate** PMD effects. In systems with large PMD, signal regeneration has to be used or the high PMD fibers have to be replaced with low PMD fibers (such as spun fibers).