Optical Performance Monitoring Applications in Transparent Networks

Dan Kilper Advanced Photonics Research Lucent Technologies <u>dkilper@lucent.com</u>

C. R. Giles, W. Weingartner, A. Azarov, P. Vorreau, and J. Leuthold

WOCC April 22, 2005 Newark, NJ

Ultra-long Transport Systems Point-to-Point Transparency

Advanced Technologies:

Raman Amplification Dispersion Managed Solitons Dynamic Gain Equalization DPSK, Advanced Modulation Formats Mitigation of: Noise Dispersion Gain variation Nonlinearity

ULH+ROADM/OXC MESH NETWORK

Transparent Reconfiguration

- Intersecting lines must discover one another and exchange topology information.
- Auto-provisioning must operate across the mesh network.
- Faults are correlated across multiple systems.
- Greater flexibility requires better stability & control

Optical Network Performance Monitoring

• First Generation: Total power monitoring. Amplifier gain adjustment, signal presence, link status verification.

• Second Generation: WDM channel presence / power and wavelength. Auto-provisioning and gain flattening.

• Third Generation: Channel optical SNR / Q-factor, active dispersion compensation. Fault isolation, dispersion compensation.

• Fourth Generation: Transparent network management. Channel performance verification after link concatenation.

• Fifth Generation: In-situ link parameter extraction from detailed channel signatures. Preplanning / preprovisioning assessment. Resource database creation.

Eliminating Regenerators

- Must also consider fault management requirements
- Cost of OADM/ULH technology (DGEF)/OPM < OEO

3G: DWDM Fault Management

- Advanced technologies/network complexities
 - Component alarms may be insufficient
- Need OPM that correlates with end terminal BER
 - OPM registers change when end terminal BER alarm triggers
- OPM granularity to suit carrier opex goals

Lucent Technologies

Bell Labs Innovations

6

Electronic Fault Management

- BER monitoring is sufficient
 - No errors in: No errors out
 - Noise does not propagate past regenerators
- Isolate faults to ~600 km

Ultra-Long Haul Transmission

- Replace OEOs with OA repeaters: lose fault isolation
- BER at OA repeaters has limited benefit
- Noise propagates through repeaters

Fault Isolation

- Need sensitivity to wide variety of impairments.
- BER 10⁻⁹ gives ~ 4 orders of magnitude advanced warning in FEC-based links.

OPM Fault Management Technologies

- BER Measurement
 - Sensitive to end terminal impairments
 - Problem: BER in network better than end term.
- Other methods: OSNR, half-clock, pol. ext., histograms, tones, autocorrelation, ...
 - Must show advantage over Q/BER approach
 - Cost/sensitivity/impairment coverage
 - Target systems that cannot use Q-factor

Q Factor

Signal to Noise Ratio Measurement

10G RZ Eye Diagram

Lucent Technologies

Bell Labs Innovations

Q Factor Monitoring Techniques

FEC Error Count Eye Mapping

- Vary voltage threshold across center of eye
- Use commercial 10 Gb/s receiver

Q-factor vs. time

- Determined measurement noise contributions under different conditions
- Error due to counting statistics, threshold voltage accuracy, power fluctuations

Dispersion map issues

- Q factor varies with dispersion map
- 10Gb/s: up to 1000 ps/nm
 OK for trend monitoring
- 40 Gb/s: eye closed until end terminal
 - Would need per-channel DCM/tunable DCM
 - Also obstacle to 40G optical networks

∆Q sensitivity is
 weakly dependent
 on magnitude of
 Q factor

OSNR/Dispersion

- Measure Q-Factor up to –982 ps/nm accum. dispersion
- OSNR sensitivity only weakly dependent on dispersion Use DCMs & SSMF

Dispersion managed solitons: pulses retain shape throughout transmission!

Always within receiver
 Q-factor range

Sensitivity varies with monitor location

- OSNR, non-linear impairments accumulate with distance
- Dispersion follows map

Calculate "optical" Q on line: Monitor independent:

$$\mathbf{Q} = \frac{I_1 D_P - I_0}{\sqrt{\sigma_{Beat}^2 (D_P) + \sigma_{ASE}^2} + \sqrt{\sigma_{ASE}^2}}$$

Dispersion Penalty

$$D_{P} = \sqrt{1 - (D_{A}f)^{2}}$$

D_A=Accum. Dispersion f = scaling factor (4 dB @ 800 ps/nm)

Dispersion faults

Strongly dependent on map

+/- 624 ps/nm for 10⁻⁹ BER degradation

- Look for discontinuities along path
- Use +/- bands to identify dispersion problems

Performance Polling: Tunable Filter + OA

- Guarantee equal or better sensitivity than end terminal
- Replace entire OEO terminal with single OE, channel selector, and single channel OA
- O/E provides BER, conventional PM, Q-factor, average power, channel presence, wavelength drift

WDM vs. (O)TDM

WDM: Access signals with OE throughout system

OTDM: OE not available/feasible within network

QoS Monitoring in Transparent Networks

Quality of Service (QoS): per channel BER

Regeneration Applications

- Unambiguous indication of signal quality
 - Correlation with common impairments
 - Do not need to isolate or measure impairments
 - No contingencies on relative impairment contributions
- Absolute measure of signal quality
 - Usually only coarse measure
 - Error free/not error free
 - Guarantee above threshold: 10⁻¹⁴ BER
- Satisfy operating requirements of system
 - System specific: input power, modulation format, etc.

Optical Regeneration + Monitoring

Bell Labs Innovations

Unambiguous Quality Indicator: Pout/Pin

Bell Labs Innovations

24

 Transparent optical networks generate a need for new system monitoring and management methods

- Focus on applications will drive technology development
- Fault management: Q-factor natural replacement for BER
- Regeneration applications: solutions tied to regeneration technologies & provide BER trend

Back-Up Slides

Is spectral OSNR useful?

Problems:

- Tight channel spacing: overlapping spectra
- Per-channel OSNR (OADM/OXC networks)
- Filters modify spectra (OADM/OXC)
- Poor coverage: MPI, pump RIN transfer, FWM

Lucent Technologies

Bell Labs Innovations

Is spectral OSNR useful?

Yes, under following constraints:

- OSNR-degradation is only impairment of interest or major impairment
- Channels are widely spaced in wavelength
 - Or spectral regions reserved for monitoring
- Used for amplifier monitoring (not channel monitoring)
 - Don't follow channels through ROADM/OXC

