Performance Evaluation and Improvement of Broadcasting Algorithms in Ad Hoc Networks

Hao Zhang and Zhong Ping Jiang

ECE Department Polytechnic University, New York

Ad Hoc Networks

- No base station, self-organized
- Energy and bandwidth constraint
- Mobility sensitive (vehicular ad-hoc)
- Applications
 - Vehicular networks
 - Disaster relief
 - Military task

Application of Broadcast Algorithms

- Route searching (DSR, AODV, ZRP protocols)
- Location discovery (location-based routing)
- Information dissemination (sensor network)

Broadcast Features

- Broadcast packet size is small
- No prior global topology knowledge
- No synchronization
- Unreliable --- 100% reliable required in some cases
- No acknowledgement of any kind, no RTS/CTS dialogue,
- Broadcast frequency is much higher for mobile scenarios

Broadcast Storm Problem

The straight forward broadcast approach (flooding): Each node rebroadcasts a newly received message.

- Many messages are broadcasted simultaneously to the whole network
- Increase the number of hidden terminals, leading to networkwide collisions and contentions

Reduce Broadcast Redundancy

- Alleviate the broadcast storm problem
 - Reduce no. of transmitting (forward) nodes while still covering most nodes in the network.
- These special forward nodes form a Connected Dominant Set (CDS).
- Finding a minimum CDS is a NP hard problem, so need to design heuristic methods.

Ad Hoc Broadcast Algorithms

- Probability based algorithms
 - Fixed probability
 - Counter-based
 - Distance-based
- Sender based algorithms
 - Multi-point Relay (MPR)
 - Dominant Pruning (DP)
 - Partial Dominant Pruning (PDP)
- Receiver based algorithms
 - Self Pruning (SP)
 - Wu and Li's Marking Methods (Rule1-2, Rule K)

Our Work

- Analytical models for various broadcast algorithms
- Mobility sensitive broadcast algorithms
- Broadcast algorithms in route searching

Mobility Sensitive Broadcast Algorithms

 Mobility can harm protocol performance.

 Objective: Design mobility sensitive mechanisms on top of existing broadcast schemes. A Popular Broadcast Algorithm --- MPR

Multi-Point Relay Scheme:

Nodes at *K*+1 hop should be covered by *K* hop nodes.

Greedily select forward nodes.

When nodes are moving...

Link AC is broken...

11

Adaptive Covering Method

• Every node-pair is given a relative stability level (RSL) (1 or 2).

•In mobile cases, the number of covering forward nodes is increased. RSL(u,x)*RSL(x,v) + RSL(u,y)*RSL(y,v) + ... >= 4.

Numerical Results

Delivery ratio vs. maximum moving speed.

Numerical Results cont'd

Delivery ratio vs. number of nodes.

Efficient Broadcast in Route Searching

- To find a destination, conventional method is to broadcast a route searching packet to the whole network.
- To reduce redundancy and save network bandwidth, route searching packets are transformed to termination packets after the destination is found.

Limited-Hop Broadcast Algorithm

Simulation Results

The network is composed of 80 nodes, M is no. of destinations, K is the limited hop no.

Conclusions

- Broadcast is a widely used technique in ad hoc & sensor networks.
- Efficient broadcast algorithms should be adaptive to nodal mobility.
- Performance can be analytically revealed.

On-going Work

- Broadcast algorithms in sensor location systems.
- Broadcast algorithms in vehicular communications.
- Exploiting feedback information to enhance broadcast efficiency.

Thanks!