Lightweight Service Advertisement and Discovery in Mobile Ad hoc Networks

Dr. Liang Cheng Director, Laboratory Of Networking Group Department of Computer Science and Engineering P.C. Rossin College of Engineering & Applied Science Lehigh University

April 22, 2005

Outline

- Introduction
- Motivation
- Summary

Instructor: Dr. Liang Cheng

Motivation

- Existing service discovery approaches are not suitable for mobile ad hoc networks
 - Jini, SLP
 - Lightweight
 - Mobility

Instructor: Dr. Liang Cheng

Solution

- Extending MANET multicast protocols
 - MobilMesh, ODMRP, etc.

Instructor: Dr. Liang Cheng

Why ODMRP?

- Simplicity
- Reliable construction of routes and forwarding group
- Low channel and storage overhead
- Stable performance [1]

[1] S.-J. Lee *et al.*, "A Performance Comparison Study of Ad Hoc Wireless Multicast Protocols," *INFOCOM* 2000, Mar. 2000, pp. 565–74.

Instructor: Dr. Liang Cheng

Instructor: Dr. Liang Cheng

Packet Format for ORMRP

ТҮРЕ	Reserved	TTL	HOP count	
Multicast Group IP address				
Sequence number				
Source IP address				
Previous hop IP address				
Previous Hop X coordinate				
Previous Hop Y coordinate				
Previous hop	moving speed	Previous hop moving direction		
Minimum link expiration time				

Service Awareness Header

TYPE	Option field	TTL	Service port		
Server address					
Service name					
Protocol type		reserved			
Optional fields					

Instructor: Dr. Liang Cheng

ODMRP in NS-2

- Each node in ns2 binds to an agent. The agent can handle events and send/receive packets.
- ODMRP agent class has been modified
 - To support service provider and normal nodes
 - To handle the service awareness header

PUSH Mode Implementation

- Agent checks its node type while sending a *JoinQuery* packet.
- If it is a service provider, it will attach an service awareness header.
- The receivers in the multicast group will detect this header by a flag defined in the original ODMRP packet.

PULL Mode Implementation

- Agent attaches a service awareness header to the ODMRP packet and multicast it into the group.
- If service provider in the multicast group receives this query, it will do the same stuff as PUSH mode.

Evaluation Parameters

- Successful delivery ratio
- Overhead ratio
- Delay time
- NS-2 simulations

Simulation Results (Mobility)

Figure 5. Success delivery ratio as a function of pause time (x axis as the pause time in second and y axis as the success ratio in %).

Instructor: Dr. Liang Cheng

Simulation Results (Overhead)

Figure 6. Overhead ratio as a function of the number of service providers (x axis as the number of service providers and y axis as the overhead ratio in %).

Instructor: Dr. Liang Cheng

CSE262: Programming Languages

^{04/14/05}

Simulation Results (Delay)

Figure 7. Delay time as a function of the number of nodes (x axis as the number of nodes and y axis as the delay time in second).

Instructor: Dr. Liang Cheng

Future Work

- Including packet losses into the wireless channels
- Comparing the performance with other service awareness implementation
- Adding service invocation

Instructor: Dr. Liang Cheng