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Wireless Ad Hoc Network



A Fundamental Question

What is the information-theoretical limit

Transport capacity (packet-meters/slot/node)

Spectral efficiency (bit-meters/Hz/second/m2)



Gupta-Kumar Model (2000)

Assumption
Achievable rate on each link is fixed
Effective communications are confined to 
nearest neighbors



Gupta-Kumar Model (2000)

For an ad hoc network on a unit square, if node density 
is D, the number of nodes on a path equals about D½



Gupta-Kumar Scaling Law (2000)

Scaling law
As node density D → ∞, transport capacity 
converges to zero at rate O(1/D½)

Large scale wireless ad hoc networks are 
incapable of information transportation 

– a pessimistic conclusion



Can Scaling Law be Overcome?



Gupta-Kumar Model

Communications are confined in nearest 
neighbors

Radio frequency bandwidth is not considered 
in the model

Spectral efficiency is unknown 



Observation I

If communications are not confined to nearest 
neighbors, transport capacity can be increased



Observation II

If CDMA channel is considered and spreading gain (or 
bandwidth) is large compared with node density, then 
communications are not necessary to be confined in 
nearest neighbors  



A wireless CDMA ad hoc 
network may overcome the 
scaling law



Our Model

Large Wireless CDMA Ad Hoc 
Networks



CDMA 

Nodes access each other through a common 
CDMA channel 
Spreading sequences are random, i.i.d. (long 
sequences)
Spreading gain N = WTb

All nodes have same transmission power P0

No power control is employed



Power Decay Model

Power decays in distance r

P0 is transmission power, r0 > 0, β > 2 
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Network Topology

Nodes are distributed on entire 2-D plane
Node locations can be regular or arbitrary



Node Distributions

Nodes are uniformly distributed 
At any time t, a percentage ρ of nodes are 
sending 
Sending nodes are also uniformly distributed 
For each N, node density is dN, or 

dN/N (nodes/Hz/second/m2)
Traffic intensity 

ρdN/N  (sending nodes/Hz/second/m2)
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Limiting Network

dN → ∞, N → ∞, dN/N → α
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Objective

For the limiting network as dN → ∞, N → ∞, 
dN/N → α, we derive

Transport capacity (bit-meters/symbol 
period/node)
Spectral efficiency (bit-meters/Hz/second/m2)



Received Signal in a node

Chip matched filter output in a receiving node

r is link distance
b, P(r), and s are for desired sending node
bx, P(||x||), and sx are for interference nodes
n ~ N(0,σ2I) 
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MF Output

MF outputs an estimate of b

Unit-power SIR
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Asymptotics
Theorem: Interference I is asymptotically independent 
Gaussian, and unit-power SIR ηN converges a.s. to 

where total interference power to a node is finite

(watts/Hz/second)

Include all interference of the network
Limit network is capable of information transportation 
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Limit Link Channel

From sending b to MF output, there is a link 
channel, which is memoryless Gaussian

z ~ N(0,1), i.i.d.
SIR = ηP(r) depends only on link distance
Same result can be obtained if a decorrelator 
or MMES receiver is employed
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Link Channel Capacity

For a link of distance r, the link capacity is 

(bits/symbol period)
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Packet delivery

A packet is delivered from source node to 
destination node via a multihop route
ϕ(x) = {xi, i = 1, …, h(x), x1 + x2 + … + xh(x) = x}
A packet is coded 
with achievable rate

The code rate of a packet 
to be delivered via route 
ϕ(x) must be not greater 
than the minimum link 
capacity on the route
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Route Transport Capacity

Via route ϕ(x),                     bits per symbol 
period are transported by a distance of ||x|| 
meters
h(x) nodes participate in transportation
Route transport capacity is 

(bit-meters/symbol period/node)
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Routing Protocol

A global routing protocol schedules routes of 
all packets
Consider achievable routing protocols that 
schedule routes without traffic conflict
Let distribution of S-D vector x be F(x)
For the same S-D vector x, different routes 
ϕ(x) may be scheduled 
Under routing protocol u, let route ϕ(x) for S-
D vector x have distribution Vu[ϕ(x)]



Transport Throughput

Transport throughput achieved under routing 
protocol u

(bit-meters/symbol period/node) 
F(x) – distribution of S-D vector x
Vu[ϕ(x)] – route distribution
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Transport Capacity

Each achievable routing protocol attains a 
transport throughput
Transport capacity is defined as 

– collection of all achievable routing 
protocols
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Spectral Efficiency

Given transport capacity Γ, spectral efficiency  
is

(bit-meters/Hz/second/m2) 

Γ=Π α



Main Result

Theorem: Transport capacity equals

r – S-D distance; F(r) – distribution of r

Spectral efficiency equals 
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Outline of Proof 

Step 1: Show that Γ* is an upper bound
Step 2: Show that Γ* is the lowest upper 
bound

Need to find an achievable routing protocol to 
attain Γ* − ε for any ε > 0



Scaling Law

If α → ∞ (or N fixed but dN → ∞), then

Transport capacity goes to zero at rate 1/α -
“scaling law” behavior
Spectral efficiency converges to a constant

This scaling law is due to that radio 
bandwidth does not increases as fast as node 
density increases 

– different from that of Gupta-Kumar model
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Scaling Law

The “scaling law” can be overcome, provided 
spreading gain N (or bandwidth) increases at 
the same rate as node density dN increases

A large wireless CDMA ad hoc network is 
capable of information transportation!
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Transport capacity monotonically decreases with α
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Π monotonically increases with α

Spectral Efficiency vs. Traffic 
Intensity 
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Transport capacity monotonically increases with P0
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Π monotonically decreases with P0

Spectral Power Efficiency vs. 
Transmission Power
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Sensor Networks: 
Sensor Density vs. Transmission Power

Sensor network is low powered, P0 → 0 
Question: with given total power per square meter 
αρP0 = ω, 

should we increase node density and decrease node 
transmission power? 
or converse?

Answer: 
we should increase node density and decrease node 
transmission power in terms of increase of spectral 
power efficiency
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Conclusions 

If radio bandwidth increases slower than 
node density increases, transport capacity 
decreases to zero – “scaling law”

The scaling law is essentially different from 
that of Gupta-Kumar model
The scaling law can be overcome, provided 
radio bandwidth increases as fast as node 
density increases

A large wireless CDMA ad hoc network is 
capable of information transportation 


