Transport Capacity and Spectral Efficiency of Large Wireless CDMA Ad Hoc Networks

Yi Sun

Department of Electrical Engineering The City College of City University of New York

Acknowledgement: supported by ARL CTA Program

Wireless Ad Hoc Network

What is the information-theoretical limit

Transport capacity (packet-meters/slot/node)

Spectral efficiency (bit-meters/Hz/second/m²)

Gupta-Kumar Model (2000)

Assumption

- Achievable rate on each link is fixed
- Effective communications are confined to nearest neighbors

Gupta-Kumar Model (2000)

For an ad hoc network on a unit square, if node density is D, the number of nodes on a path equals about $D^{\frac{1}{2}}$

Gupta-Kumar Scaling Law (2000)

Scaling law

■ As node density $D \rightarrow \infty$, transport capacity converges to zero at rate $O(1/D^{\frac{1}{2}})$

Large scale wireless ad hoc networks are incapable of information transportation

a pessimistic conclusion

Can Scaling Law be Overcome?

Gupta-Kumar Model

- Communications are confined in nearest neighbors
- Radio frequency bandwidth is not considered in the model
- Spectral efficiency is unknown

Observation I

If communications are not confined to nearest neighbors, transport capacity can be increased

Observation II

If CDMA channel is considered and spreading gain (or bandwidth) is large compared with node density, then communications are not necessary to be confined in nearest neighbors

A wireless CDMA ad hoc network may overcome the scaling law

Our Model

Large Wireless CDMA Ad Hoc Networks

CDMA

- Nodes access each other through a common CDMA channel
- Spreading sequences are random, i.i.d. (long sequences)
- Spreading gain $N = WT_b$
- All nodes have same transmission power P_0
- No power control is employed

Power decays in distance r

$$P(r) = \frac{P_0}{(r/r_0 + 1)^{\beta}}$$

• P_0 is transmission power, $r_0 > 0$, $\beta > 2$

Network Topology

Nodes are distributed on entire 2-D plane
 Node locations can be regular or arbitrary

•	٠	٠	٠	٠	•	٠	٠	٠	•	
•	٠	•	٠	٠	•	•	•	٠	•	
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	

Node Distributions

- Nodes are uniformly distributed
- At any time t, a percentage p of nodes are sending
- Sending nodes are also uniformly distributed
- For each *N*, node density is d_N , or
 - d_N/N (nodes/Hz/second/m²)
- Traffic intensity
 - $\rho d_N / N$ (sending nodes/Hz/second/m²)

$$d_N \to \infty, N \to \infty, d_N/N \to \alpha$$

f

$$\blacksquare d_N \to \infty, N \to \infty, d_N/N \to \alpha$$

- • • • •
- • • • • •
- •••••••••
- •••••••••
- ••••••••••

f

Limiting Network

 $\blacksquare d_N \to \infty, N \to \infty, d_N/N \to \alpha$

Limiting Network

 $\blacksquare d_N \to \infty, N \to \infty, d_N/N \to \alpha$

•• ••

Limiting Network

 $\blacksquare d_N \to \infty, N \to \infty, d_N/N \to \alpha$

• • • • • • • • • • •

Objective

For the limiting network as $d_N \to \infty$, $N \to \infty$, $d_N/N \to \alpha$, we derive

- Transport capacity (bit-meters/symbol period/node)
- Spectral efficiency (bit-meters/Hz/second/m²)

Received Signal in a node

Chip matched filter output in a receiving node

$$\mathbf{y} = b_{\sqrt{P(r)}}\mathbf{s} + \sum_{\mathbf{x} \in B_N(t)} b_{\mathbf{x}} \sqrt{P(||\mathbf{x}||)}\mathbf{s}_{\mathbf{x}} + \mathbf{n}$$

r is link distance

- **b**, P(r), and **s** are for desired sending node
- b_x , $P(||\mathbf{x}||)$, and \mathbf{s}_x are for interference nodes ■ $\mathbf{n} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$

MF Output

• **MF outputs an estimate of** b $y = \mathbf{s}^T \mathbf{y}$ $= \sqrt{P(r)}b + \sum_{\mathbf{x} \in B_N(t)} b_{\mathbf{x}} \sqrt{P(||\mathbf{x}||)} \mathbf{s}^T \mathbf{s}_{\mathbf{x}} + \mathbf{s}^T \mathbf{n}$ $= \sqrt{P(r)}b + I$

Unit-power SIR

$$\eta_N \equiv \frac{1}{E(I^2)}$$

Theorem: Interference *I* is asymptotically independent Gaussian, and unit-power SIR η_N converges a.s. to

$$\eta = \frac{1}{\sigma^2 + \overline{P}(\infty)}$$

where total interference power to a node is finite

$$\overline{P}(\infty) = \frac{2\pi r_0^2 \alpha \rho P_0}{(\beta - 2)(\beta - 1)}$$

(watts/Hz/second)

- Include all interference of the network
- Limit network is capable of information transportation

From sending b to MF output, there is a link channel, which is memoryless Gaussian

 $y = \sqrt{\eta P(r)}b + z$

 $z \sim N(0,1)$, i.i.d.

- SIR = $\eta P(r)$ depends only on link distance
 - Same result can be obtained if a decorrelator or MMES receiver is employed

For a link of distance *r*, the link capacity is

$$C(r) = \frac{1}{2}\log_2(1 + \eta P(r))$$

(bits/symbol period)

Packet delivery

A packet is delivered from source node to destination node via a multihop route $\varphi(\mathbf{x}) = \{\mathbf{x}_{i}, i = 1, ..., h(\mathbf{x}), \mathbf{x}_{1} + \mathbf{x}_{2} + ... + \mathbf{x}_{h(\mathbf{x})} = \mathbf{x}\}$ A packet is coded with achievable rate The code rate of a packet to be delivered via route X_3 $\varphi(\mathbf{x})$ must be not greater **X**₂ than the minimum link \mathbf{X}_1

X₄

capacity on the route

Route Transport Capacity

- Via route $\varphi(\mathbf{x})$, $\min_{1 \le i \le h(\mathbf{x})} C(||\mathbf{x}_i||)$ bits per symbol period are transported by a distance of $||\mathbf{x}||$ meters
- *h*(**x**) nodes participate in transportation
 Route transport capacity is

X₄

 X_3

 \mathbf{X}_2

X

$$\Gamma_{\varphi(\mathbf{x})} = \frac{\|\mathbf{x}\| \min_{1 \le i \le h(\mathbf{x})} C(\|\mathbf{x}_i\|)}{h(\mathbf{x})}$$

(bit-meters/symbol period/node)

Routing Protocol

- A global routing protocol schedules routes of all packets
- Consider achievable routing protocols that schedule routes without traffic conflict
- Let distribution of S-D vector \mathbf{x} be $F(\mathbf{x})$
- For the same S-D vector **x**, different routes $\varphi(\mathbf{x})$ may be scheduled
- Under routing protocol u, let route $\varphi(\mathbf{x})$ for S-D vector **x** have distribution $V_u[\varphi(\mathbf{x})]$

Transport Throughput

I

Transport throughput achieved under routing protocol u

$$\Gamma(u) = E_u(\rho\Gamma_{\varphi(\mathbf{r})})$$

= $\rho \int_{\Re^2} \int_{\varphi(\mathbf{x})\in\Omega_u(\mathbf{x})} \frac{\|\mathbf{x}\| \min_{1\leq i\leq h(\mathbf{x})} C(\mathbf{x})}{h(\mathbf{x})} dV_u(\varphi(\mathbf{x})) dF(\mathbf{x})$

(bit-meters/symbol period/node)

- $F(\mathbf{x})$ distribution of S-D vector \mathbf{x}
- $V_u[\varphi(\mathbf{x})]$ route distribution

protocols

Spectral Efficiency

Given transport capacity Γ, spectral efficiency is

 $\Pi = \alpha \Gamma$

(bit-meters/Hz/second/m²)

Main Result

Theorem: Transport capacity equals

$$\Gamma^* = \rho \int_0^\infty r \max_{h(r) \ge 1} \frac{C(r/h(r))}{h(r)} dF(r)$$

r – S-D distance; F(r) – distribution of r

Spectral efficiency equals $\Pi^* = \alpha \rho \int_{0}^{\infty} r \max_{h(r) \ge 1} \frac{C(r/h(r))}{h(r)} dF(r)$

Outline of Proof

- Step 1: Show that Γ^* is an upper bound
- Step 2: Show that Γ^{*} is the lowest upper bound
 - Need to find an achievable routing protocol to attain $\Gamma^* \varepsilon$ for any $\varepsilon > 0$

Scaling Law

- If $\alpha \to \infty$ (or *N* fixed but $d_N \to \infty$), then $\Gamma = O(1/\alpha)$ $\Pi = O(1)$
 - Transport capacity goes to zero at rate 1/α -"scaling law" behavior
 - Spectral efficiency converges to a constant

This scaling law is due to that radio bandwidth does not increases as fast as node density increases

- different from that of Gupta-Kumar model

Scaling Law

The "scaling law" can be overcome, provided spreading gain N (or bandwidth) increases at the same rate as node density d_N increases

 $\Gamma = \text{constant} > 0$

 $\Pi = \text{constant} > 0$

A large wireless CDMA ad hoc network is capable of information transportation!

Transport Capacity vs. Traffic Intensity

Transport capacity monotonically decreases with α

Spectral Efficiency vs. Traffic Intensity

 \blacksquare Π monotonically increases with α

Transport Capacity vs. Transmission Power

Transport capacity monotonically increases with P_0

Spectral Power Efficiency vs. Transmission Power

 \blacksquare Π monotonically decreases with P_0

Sensor Networks:

Sensor Density vs. Transmission Power

- Sensor network is low powered, $P_0 \rightarrow 0$
- Question: with given total power per square meter $\alpha \rho P_0 = \omega$,
 - should we increase node density and decrease node transmission power?
 - or converse?

$$\lim_{P_0\to 0,\alpha\rho P_0=\omega}\Pi=c\,\alpha\rho\eta_{\omega}\int_{0}^{\infty}\frac{r}{\min_{h(r)\in Z^+}h(r)[r/(r_0h(r))+1]^{\beta}}dR(r)$$

Answer:

we should increase node density and decrease node transmission power in terms of increase of spectral power efficiency

Conclusions

- If radio bandwidth increases slower than node density increases, transport capacity decreases to zero – "scaling law"
 - The scaling law is essentially different from that of Gupta-Kumar model
 - The scaling law can be overcome, provided radio bandwidth increases as fast as node density increases
- A large wireless CDMA ad hoc network is capable of information transportation