

Unconstrained Face Recognition and Analysis

S. Kevin Zhou

Siemens Corporate Research, Inc.

kzhou@scr.siemens.com

April 23, 2005 @ WOCC

Roadmap to Unconstrained Face Recognition and Analysis

Introduction

- Selected Approaches
 - Face recognition across illumination.
 - Face recognition across illumination and pose.
 - Video-based face recognition.
 - Age Estimation.

Roadmap to Unconstrained Face Recognition and Analysis

• Introduction

- Selected Approaches
 - Face recognition across illumination.
 - Face recognition across illumination and pose.
 - Video-based face recognition.
 - Age Estimation.

Why Face Recognition and Analysis?

• Application.

- Non-intrusive biometric.
- Homeland security, law enforcement, surveillance.
- Virtual reality, HCI, multimedia.

• Theory.

 Interdisciplinary: Image/video processing, mathematics, physics, vision, statistics and learning, psychophysics, neuroscience, etc.

State-Of-The-Art

- Current FR systems work well ONLY under controlled situations.
 - Neutral expression, no makeup (Intrinsic).
 - Frontal illumination, frontal view (Extrinsic).
 - Mugshot of good quality.
- Apply pattern recognition techs. to face image.
 - Appearance-based: Subspace methods
 - PCA [Turk & Pentland, 91], LDA [Belhumeur et al., 97].
 - Local feature analysis (LFA) [Penev & Atick 96], ICA
 - Neural network, evolutionary computing, genetic algorithm
 - Feature-based:
 - Elastic graph matching [Lades et al., '93].

SIEMENS

Unconstrained Face Recognition and Analysis

- Motivation: deal with unconstrained conditions
 - Intrinsic variations: expression, makeup, aging.
 - Extrinsic variations: illumination and pose.
 - Surveillance video.
 - Age-related: Aging process, age estimation.
 - Expression and animation.
- Feasible approaches
 - Combine pattern recognition with variation modeling
 - Face modeling and animation
 - Utilized video characteristics
 - Statistical learning

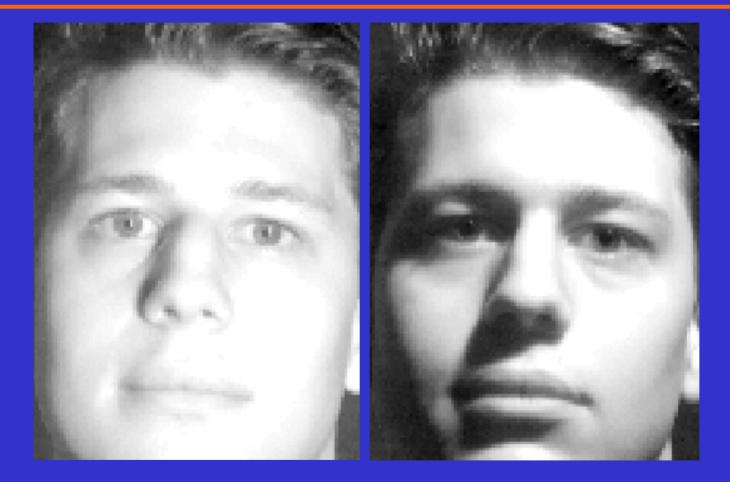
Roadmap to Unconstrained Face Recognition and Analysis

Introduction

- Selected Approaches
 - Face recognition across illumination.
 - Face recognition across illumination and pose.
 - Video-based face recognition.
 - Age Estimation.

* **S. Zhou**, R. Chellappa, and D. Jacobs, "Characterization of human faces under illumination variations using rank, integrability, and symmetry constraints," European Conf. on Computer Vision, 2004.

Illumination affects appearance



* Courtesy of Prof. David Jacobs.

April 23, 2005 @ WOCC

Approach

• Generalized photometric stereo.

- Describes all possible human face images under all possible illumination conditions.
- Combines a physical illumination model with statistical regularity in the human class.
- Derive an illumination-invariant signature for robust face recognition under illumination variation.

Key Derivations of Generalized Photometric Stereo



Lambertian illumination model

April 23, 2005 @ WOCC

FR Across Illumination: Recognition Results

Training set	Yale	Yale (<i>m</i> =10)	Vetter (<i>m</i> =100)
Method	Eigenface	Generalized Photometric Stereo	Generalized Photometric Stereo
Average Recognition Rate	35%	67%	93%

Roadmap to Unconstrained Face Recognition and Analysis

- Introduction to unconstrained face recognition.
- Selected Approaches
 - Face recognition across illumination.
 - Face recognition across illumination and pose.
 - Video-based face recognition.
 - Age Estimation.

* **S. Zhou** and R. Chellappa, *"Image-based face recognition under illumination and pose variations,"* Journal of Optical Society of America (JOSA), Feb., 2005.

SIEMENS

Appearances under illumination and pose variation

• 68 objects, 12 lights, 9 poses.

April 23, 2005 @ WOCC

S. Kevin Zhou, SCR

SIEMENS

Approach

• Illuminating light field

- Describes all possible human face images under all possible illumination conditions and at all possible poses.
- Extends generalized photometric stereo to handle pose variation.
- Derives an illumination- and pose-invariant signature for robust face recognition under illumination and pose variations.

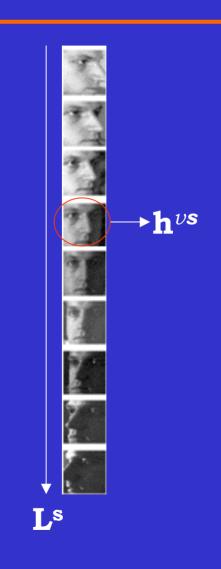
Illuminating Light Field (ILF) [Zhou & Chellappa JOSA'05]

• The concept of light field (LF).

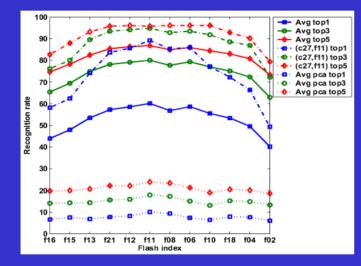
$$- L^{\mathbf{s}}_{Vd \times 1} = \mathbf{W}_{Vd \times 3m} (\mathbf{f}_{m \times 1} \otimes \mathbf{s}_{3 \times 1})$$

$$- \mathbf{h}_{d \times 1}^{vs} = \mathbf{W}^{v}(\mathbf{f} \otimes \mathbf{s})$$

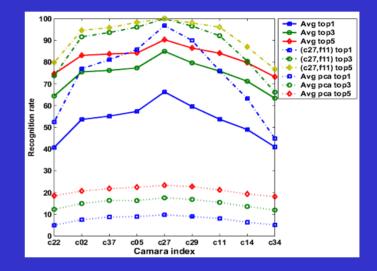
- **f** : illumination- and pose-invariant.



FR Across Illumination and Pose: Recognition Results



Across illuminations



Across poses

Illumination variation is easier to handle than pose variation!!

Roadmap to Unconstrained Face Recognition and Analysis

Introduction

Selected Approaches

- Face recognition across illumination.
- Face recognition across illumination and pose.
- Video-based face recognition.
- Age Estimation.

* **S. Zhou**, V. Krueger, and R. Chellappa, *"Probabilistic recognition of human faces from video,"* Computer Vision and Image Understanding (special issue on Face Recognition), Vol. 91, pp. 214-245, August 2003.

Video presents challenges and chances

- Requires solving both tracking and recognition.
- Appearance variation.
- Poor image quality.
- Multiple frames with temporal continuity.

SIEMENS

Tracking-then-Recognition v.s. Tracking-and-Recognition Approaches

Tracking-then-recognition

Essentially still-image-based face recognition

Utilize temporal information for tracking only

Recognition performance relies on tracking accuracy **Tracking-and-recognition**

Simultaneous tracking-andrecognition

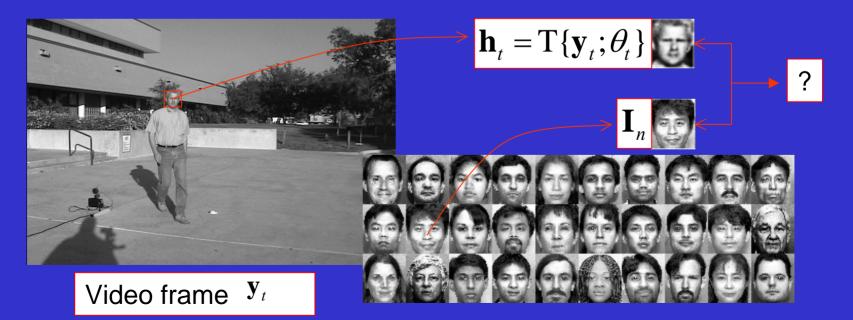
Utilize temporal information for tracking and recognition

Improves tracking accuracy and recognition performance

Probabilistic, interpretable

Time Series State Space Model

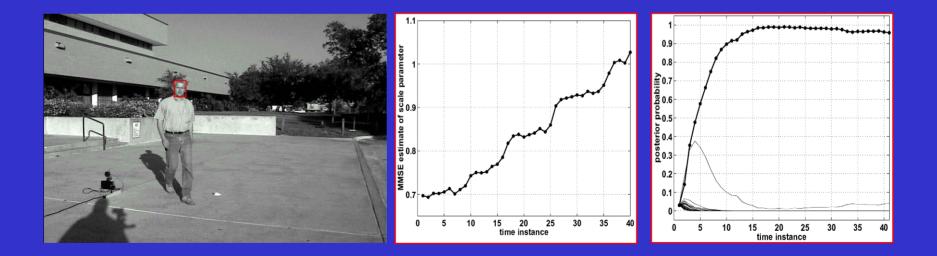
- Motion equation: $\theta_t = g(\theta_{t-1}) + \mathbf{u}_t$
- Identity equation: $n_t = n_{t-1}$
- Observation equation: $\mathbf{h}_{t} = \mathbf{T}\{\mathbf{y}_{t}; \boldsymbol{\theta}_{t}\} = \mathbf{I}_{n_{t}} + \mathbf{v}_{t}$



April 23, 2005 @ WOCC

Model Solution

Posterior distribution: p(n_t, θ_t | y_{0t}) p(n_t | y_{0t}) : posterior recognition density. p(θ_t | y_{0t}) : posterior tracking density. Particle filter with efficient computation.



Tracking Accuracy and Recognition Result

• NIST database

- Case 1: Pure tracking using a Laplacian density.
- Case 2: Tracking-then-recognition using an IPS density.
- Case 3: Tracking-and-recognition using a combined density.

Case	Case 1	Case 2	Case 3
Tracking Accuracy	87%	NA	100%
Recognition within top 1	NA	57%	93%
Recognition within top 3	NA	83%	100%

* Courtesy of the HumanID project

Roadmap to Unconstrained Face Recognition and Analysis

- Introduction to unconstrained face recognition.
- Selected Approaches
 - Face recognition across illumination.
 - Face recognition across illumination and pose.
 - Video-based face recognition.
 - Age Estimation.

* **S. Zhou** *et al., "Image based regression using boosting method,"* Submitted.

What is Image Based Regression?

- Regression or function approximation
 - Given an input image \mathbf{x} , infer or approximate an output $\mathbf{y}(\mathbf{x})$ that is associated with the image \mathbf{x} .
- Age estimation: $\mathbf{y}(\mathbf{x}) = age$

SIEMENS

State-Of-The-Art: Data-Driven Approach

• Nonparametric regression (NPR) $g(\mathbf{x}) = \sum_{n=1}^{\infty} w_n(\mathbf{x}) \mathbf{y}(\mathbf{x}_n); w_n(\mathbf{x}) \propto h(\mathbf{x}, \mathbf{x}_n);$ - Smoothed k-NN regressor

Kernel ridge regression (KRR)
 Hyperplane in RKHS

$$\mathbf{g}(\mathbf{x}) = \sum_{n=1}^{N} \mathbf{w}_n k(\mathbf{x}, \mathbf{x}_n) = \sum_{n=1}^{N} \mathbf{w}_n \phi(\mathbf{x}_n)^{\mathrm{T}} \phi(\mathbf{x})$$

• Support vector regression (SVR) $g(\mathbf{x}) = \sum_{i=1}^{N} w_{n_i} k(\mathbf{x}, \mathbf{x}_{n_i})$ - Single output, ε -insensitive loss function

- Boosting regression
 - Using boosting method
 - Not data-driven

 $\mathbf{g}(\mathbf{x}) = \sum_{m} \alpha_{m} \mathbf{h}_{m}(\mathbf{x}); \quad \mathbf{h}_{m}(\mathbf{x}) \in \mathbf{H}$

Challenges: Appearance Variation

- Appearance variation
 - Inter-object variation.
 - Extrinsic variations: camera, geometry, lighting, etc.
 - Alignment/background.

- Treatment of appearance variation
 - Data-driven approach: Kernel function $k(\mathbf{x}, \mathbf{x}_n)$ is global and sensitive to appearance variation.
 - Boosting approach: Feature function $h_m(x)$ is local and robust to appearance variation.

SIEMENS

Boosting

- **Boosting** [Freund & Schapire'95][Friedman *et al.,* AS'00]
 - AdaBoost is the state-of-the-art classification method.
 - Ensemble method: Combines weak learners into a strong learner using an additive form:

$$\mathbf{g}(\mathbf{x}) = \sum_{m} \alpha_{m} \mathbf{h}_{m}(\mathbf{x}); \quad \mathbf{h}_{m}(\mathbf{x}) \in \mathbf{H}$$

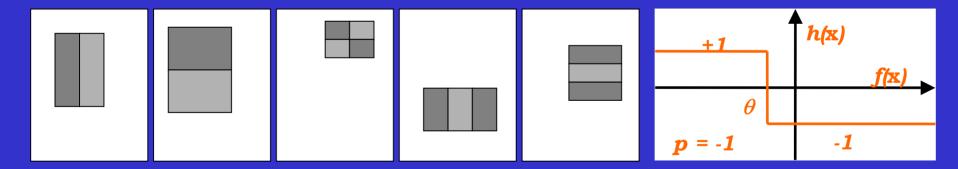
- Selects weak learners (or features) from the dictionary set.
- Three elements of boosting

 (a) Loss function or error model L(g(x), y(x))
 (b) Dictionary set H = {h(x)}

Dictionary Set

• Primitives: 1-D decision stump [Viola & Jones, CVPR'01]

$$h(\mathbf{x}) = \begin{cases} +1; & \text{if } pf(\mathbf{x}) \ge p\theta \\ -1; & \text{otherwise} \end{cases}; \qquad f(\mathbf{x}): \text{ simple feature} \end{cases}$$



Result: Age estimation

• Variations

Pose, illumination, expression, beard, moustache, spectacle, etc.

• Performance (1002 images, 800 training/202 testing, 5-fold CV)

	NPR	KRR	SVR	IBR
mean err.	8.44	13.56	6.60	5.81
25% per. err.	2.54	3.99	1.38	1.26
median err.	5.50	10.80	4.39	3.15
75% per. err.	10.87	17.99	9.04	7.79
testing time(s)	3.6s	3.6s	3.3s	0.016s

April 23, 2005 @ WOCC

Visual Tracking

* **S. Zhou**, et al., "Visual tracking and recognition using appearance-adaptive models in particle filters," IEEE Trans. on Image Processing, November 2004.

April 23, 2005 @ WOCC

S. Kevin Zhou, SCR

THANKS for Listening!!!

* Shaohua Kevin Zhou, <u>kzhou@scr.siemens.com</u> http://www.cfar.umd.edu/~shaohua/

April 23, 2005 @ WOCC