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Roadmap to Unconstrained Face 
Recognition and Analysis

• Introduction

• Selected Approaches
– Face recognition across illumination.
– Face recognition across illumination and pose.
– Video-based face recognition.
– Age Estimation.
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Why Face Recognition and Analysis?

• Application.
– Non-intrusive biometric.
– Homeland security, law enforcement, surveillance.
– Virtual reality, HCI, multimedia.

• Theory.
– Interdisciplinary: Image/video processing, 

mathematics, physics, vision, statistics and learning, 
psychophysics, neuroscience, etc.
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State-Of-The-Art

• Current FR systems work well ONLY under controlled 
situations.
– Neutral expression, no makeup (Intrinsic). 
– Frontal illumination, frontal view (Extrinsic).
– Mugshot of good quality.

• Apply pattern recognition techs. to face image.
– Appearance-based: Subspace methods

• PCA [Turk & Pentland, 91], LDA [Belhumeur et al., 97].
• Local feature analysis (LFA) [Penev & Atick 96], ICA
• Neural network, evolutionary computing, genetic algorithm

– Feature-based:
• Elastic graph matching [Lades et al., ’93].
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Unconstrained Face Recognition and 
Analysis

• Motivation: deal with unconstrained conditions
– Intrinsic variations: expression, makeup, aging.
– Extrinsic variations: illumination and pose.
– Surveillance video.
– Age-related: Aging process, age estimation.
– Expression and animation.

• Feasible approaches
– Combine pattern recognition with variation modeling
– Face modeling and animation
– Utilized video characteristics
– Statistical learning
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Roadmap to Unconstrained Face 
Recognition and Analysis

• Introduction

• Selected Approaches
– Face recognition across illumination.
– Face recognition across illumination and pose.
– Video-based face recognition.
– Age Estimation.

* S. Zhou, R. Chellappa, and D. Jacobs, 
“Characterization of human faces under illumination 
variations using rank, integrability, and symmetry 
constraints,” European Conf. on Computer Vision, 2004.
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Illumination affects appearance

* Courtesy of Prof. David Jacobs.
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Approach

• Generalized photometric stereo.
– Describes all possible human face images under all 

possible illumination conditions.
– Combines a physical illumination model with 

statistical regularity in the human class.
– Derive an illumination-invariant signature for robust 

face recognition under illumination variation.
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Key Derivations of Generalized 
Photometric Stereo
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FR Across Illumination: 
Recognition Results

Training set Yale Yale 
(m=10)

Vetter
(m=100)

Method

Average 
Recognition 
Rate

Eigenface Generalized 
Photometric 
Stereo

Generalized 
Photometric 
Stereo

35% 67% 93%
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Roadmap to Unconstrained Face 
Recognition and Analysis

• Introduction to unconstrained face recognition.

• Selected Approaches
– Face recognition across illumination.
– Face recognition across illumination and pose.
– Video-based face recognition.
– Age Estimation.

* S. Zhou and R. Chellappa, “Image-based face 
recognition under illumination and pose variations,”
Journal of Optical Society of America (JOSA), Feb., 
2005.
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Appearances under illumination and pose 
variation
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• 68 objects, 12 lights, 9 poses.
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Approach

• Illuminating light field
– Describes all possible human face images under all 

possible illumination conditions and at all possible 
poses.

– Extends generalized photometric stereo to handle 
pose variation. 

– Derives an illumination- and pose-invariant signature 
for robust face recognition under illumination and 
pose variations.
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Illuminating Light Field (ILF)
[Zhou & Chellappa JOSA’05]

• The concept of light field (LF).
–

–

– f : illumination- and pose-invariant. 
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FR Across Illumination and Pose: 
Recognition Results

Across illuminations Across poses

Illumination variation is easier to handle than pose variation!!
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Roadmap to Unconstrained Face 
Recognition and Analysis

• Introduction

• Selected Approaches
– Face recognition across illumination.
– Face recognition across illumination and pose.
– Video-based face recognition.
– Age Estimation.

* S. Zhou, V. Krueger, and R. Chellappa, “Probabilistic 
recognition of human faces from video,” Computer Vision 
and Image Understanding (special issue on Face 
Recognition), Vol. 91, pp. 214-245, August 2003.
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Video presents challenges and chances

• Requires solving both tracking and recognition.
• Appearance variation.
• Poor image quality.
• Multiple frames with temporal continuity.
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Tracking-then-Recognition v.s. 
Tracking-and-Recognition Approaches

Tracking-then-recognition Tracking-and-recognition

Essentially still-image-based face 
recognition 

Simultaneous tracking-and-
recognition

Utilize temporal information for 
tracking only

Utilize temporal information for 
tracking and recognition

Recognition performance relies 
on tracking accuracy

Improves tracking accuracy and 
recognition performance

Probabilistic, interpretable
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Time Series State Space Model

• Motion equation: 
• Identity equation: 
• Observation equation: 
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Model Solution

• Posterior distribution:
:  posterior recognition density.
:  posterior tracking density.

• Particle filter with efficient computation.
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Tracking Accuracy and Recognition Result

• NIST database 
– Case 1: Pure tracking using a Laplacian density.
– Case 2: Tracking-then-recognition using an IPS density. 
– Case 3: Tracking-and-recognition using a combined density.

Case Case 1 Case 2 Case 3
Tracking 
Accuracy

87% NA 100%

Recognition within 
top 1

NA 57% 93%

Recognition within 
top 3

NA 83% 100%

* Courtesy of the HumanID project
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Roadmap to Unconstrained Face 
Recognition and Analysis

• Introduction to unconstrained face recognition.

• Selected Approaches
– Face recognition across illumination.
– Face recognition across illumination and pose.
– Video-based face recognition.
– Age Estimation.

* S. Zhou et al., “Image based regression using boosting 
method,” Submitted.
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What is Image Based Regression?

• Regression or function approximation
– Given an input image    , infer or approximate an 

output         that is associated with the image    .

• Age estimation:
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State-Of-The-Art: Data-Driven Approach

• Nonparametric regression (NPR)
– Smoothed k-NN regressor

• Kernel ridge regression (KRR)
– Hyperplane in RKHS

• Support vector regression (SVR)
– Single output, ε-insensitive loss function

• Boosting regression
– Using boosting method
– Not data-driven
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Challenges: Appearance Variation

• Appearance variation
– Inter-object variation.
– Extrinsic variations: camera, geometry, lighting, etc.
– Alignment/background.

• Treatment of appearance variation
– Data-driven approach: Kernel function                  is global 

and sensitive to appearance variation.

– Boosting approach: Feature function             is local and 
robust to appearance variation.
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Boosting

• Boosting [Freund & Schapire’95][Friedman et al., AS’00]

– AdaBoost is the state-of-the-art classification method.
– Ensemble method: Combines weak learners into a 

strong learner using an additive form:

– Selects weak learners (or features) from the 
dictionary set.

• Three elements of boosting
– (a) Loss function or error model 
– (b) Dictionary set
– (c) Selection algorithm
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Dictionary Set

• Primitives: 1-D decision stump [Viola & Jones, 
CVPR’01]
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Result: Age estimation

• Variations
– Pose, illumination, expression, beard, moustache, 

spectacle, etc.

• Performance (1002 images, 800 training/202 testing, 5-fold CV)
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Visual Tracking

* S. Zhou, et al., “Visual tracking and recognition using appearance-adaptive 
models in particle filters,” IEEE Trans. on Image Processing, November 2004.
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THANKS for Listening!!!

kzhou@scr.siemens.com* Shaohua Kevin Zhou, 
http://www.cfar.umd.edu/~shaohua/

mailto:kzhou@scr.siemens.com
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