

Directional Filterbank for Texture Image Classification

Hong Man Department of ECE Stevens Institute of Technology

http://www.ece.stevens-tech.edu/viel

Introduction

- Rotation invariant texture classification is a critical and un-solved problem in machine vision.
- A number of methods have been proposed:
 - Madiraju and Liu (1994): using eigen-analysis of local covariance of image blocks to obtain 6 rotation invariant features, e.g. roughness, anisotropy etc.
 - Porter and Canagarajah (1997): creating circularly symmetric Gaussian Markov random field model in wavelet domain.
 - Charalampidis and Kasparis (2002): extracting roughness features in directional wavelet domain based on steerable wavelet.
 - Do and Vetterli (2002): using Gaussian Hidden Markov Tree to model cross-scale wavelet coefficients in steerable wavelet domain. Covariance matrices in HMT are replaced by eigenvalues to achieve rotation invariance.

http://www.ece.stevens-tech.edu/viel

- □ All coefficients within each subband are scanned, which generates the observation sequence.
- The vector sequence is used to estimate the covariance matrix of the multivariate Gaussian density.
- The covariance matrices of different images belonging to that same class will generally cluster in the Ndimensional space (N=num. directional subbands).

Rotation Inside Subbands

- As original image being rotated in space, the filtered image inside each subband is also rotated by the same angle.
- However the magnitude level of the coefficients inside each specific subband many change. For example (as shown in the next page):
 - If a texture image has strong orientation feature along direction d1, the directional subband corresponding to d1 will have the strongest response;
 - Now if this image is rotated to direction d2, the directional subband corresponding to d2 will have the strongest response.

http://www.ece.stevens-tech.edu/viel

 An 8-band directional subband decomposition of the image STRAW rotated at different angles (30° and 120°).

 A conceptual example of a bivariate Gaussian distribution with energy shift caused by rotation, i.e. a strong x2 direction is changed to a strong x1 direction.

Support Vector Machine

- SVM is a binary linear classification method which attempts to find a hyperplane that can separate samples from two classes with the largest margin.
- Given a training sample/vector sequence {x_i∈ ℜⁿ, i=1, 2, ..., N}. For each x_i, a class indicator y_i∈ {-1, 1} classifies x_i into one of two classes.
- For linearly separable dataset, the hyperplane can be expressed as $\int_{-\infty}^{N} 2\pi (x x) + h$

$$f(\mathbf{x}) = \sum_{i=1}^{N} \lambda_i y_i(\mathbf{x}_i \cdot \mathbf{x}) + b,$$

where **x** is the testing sample, and λ_i , **b** are the solution of a quadratic optimization problem that maximize the separating margin, and N

$$\sum_{i=1}^N \lambda_i y_i = 0,$$

http://www.ece.stevens-tech.edu/viel

Support Vector Machine

- Based on this f(x), the testing sample x will be classified into one of two classes according to the sign of f(x).
- For linear non-separable dataset, both x and x can be projected onto a high dimensional space through a mapping function Φ(·), and if this function satisfies

$$\Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}) = \kappa(\mathbf{x}_i, \mathbf{x})$$

the hyperplane function becomes

$$f(\mathbf{x}) = \sum_{i=1}^{N} \lambda_i y_i \kappa(\mathbf{x}_i, \mathbf{x}) + b,$$

 The binary SVM can be extended to multi-class classification in pair-wise fashion.

Experiment

- The Brodatz texture dataset is used.
- This dataset contains 13 classes of images with size of 512x512.
- Each class was digitized once for each of the seven rotation angles, i.e. 0°, 30°, 60°, 90°, 120°, 150° and 200°.
- In the training and test, each 512x512 image is partitioned into 4x4 subimages, producing 4x4x7 = 112 subimages.
- 11 training images are randomly selected from the 0° (non-rotated) subimages for each class.
- 8-band CSDFB and one splitting is applied to get 16 subbands for each subimage.

STEVENS Institute of Technology

http://www.ece.stevens-tech.edu/viel

Experiment Results

- System variants include:
 - \square SVM on 16-D feature vectors.
 - SVM on 8-D feature vectors. The 8–D vector is obtained by only keeping the eight most significant eigen-values after the eigen-analysis. It represents a computational advantage.
- The results are compared with those reported by Rosiles and Smith (2001), where the same CSDFB was used for non-rotated texture classification, and feature vectors consist of variance from each subband.
- Unlike some previous works that only reported the results on selected rotation angles with selected subimages, all test results are reported here!

http://www.ece.stevens-tech.edu/viel

Classification Results

texture	SVM-16	SVM-8	var. vec.[8]
bark	0.8614	0.8416	0.5644
brick	0.0792	0.0891	0.0300
bubble	0.8911	0.8911	0.6039
grass	0.8911	0.8911	0.6634
leather	0.7327	0.5743	0.3267
pigskin	0.5149	0.6436	0.1584
raffia	0.4554	0.4059	0.1683
sand	0.8416	0.8416	0.9010
straw	0.7525	0.6337	0.4158
water	0.7426	0.5644	0.0396
weave	0.9505	0.9406	0.0396
wood	0.7030	0.6832	0.0495
wool	0,7525	0.7030	0.1188

Table 1. Classification performance of rotated texture images averaged over all seven different angles.

Classification Results

Rotation	SVM-16	SVM-8	var. vec.[8]
00	0.8154	0.7846	0.8000
30°	0.7500	0.7067	0.3400
60°	0.6058	0.5577	0.2010
90°	0.7067	0.7212	0.2500
120°	0.6538	0.6394	0.2060
1500	0.6587	0.6010	0.3120
200°	0.8221	0,7548	0.4180

Table 2. Classification performance of images at different rotation angles averaged over all thirteen classes.

http://www.ece.stevens-tech.edu/viel

