

Advances in Optoelectronic Technologies for ROADM Subsystems

Louay Eldada Chief Technology Officer

DuPont Photonics Technologies

louay.eldada@usa.dupont.com http://www.photonics.dupont.com

Migration Toward Agile Optical Networks

Optoelectronic functions needed in agile optical networks:

- Tunable Lasers
- ROADMs

Network Function	Justification	Compatibility	New Components
Fixed functions			Fixed DWDM lasers, Fixed OADM
Narrow tunable laser	Inventory reduction	Drop-in for fixed laser	Thermal-tuned DFB
Full-band tunable laser	Inventory system simplification	Drop-in for fixed transponder	External-cavity laser
Type I ROADM Limited flexibility	Stranded capacity reduction, simple engineering rules	Dual-use as DGE	λ blocker + fixed filters or Demux/ Switch/Mux PLC
Type II ROADM Anyλto any port Degree 2	No manual intervention, monitor & control	Retain blocker, add tunable laser, no impact to thru path; or all PLC solution, can be more cost-effective; or WSS	Tunable filters/lasers or OXC or WSS
Higher-Degree ROADM Any combination of λ 's to any port	Ring-interconnect w/o OEO	Select locations only; interop with other nodes, same lasers	wss
Optical Switch (aka OXC)	Mesh protection, etc.	Select locations only	Large WSS
Autonomous Agility	Optimum utilization Minimum OpEx	Same physical layer hardware	Integrated management

ROADM Use in Networks

Market (Technology)	Component Vendors	System Vendors	Carriers (System Suppliers)
Long-Haul (Wavelength Blocker)	Avanex, JDSU, DuPont, LightConnect	Lucent, Ciena, Marconi, Siemens	Qwest (Lucent), Verizon (Lucent), GigBE project (Ciena), MCI (Ciena), BT (Marconi), MCI (Siemens), AT&T (Siemens), Broadwing (Corvis)
Metro (Wavelength Blocker)	Avanex, JDSU, DuPont, LightConnect, CoAdna, Polycromix, Xtellus	Alcatel/Tropic, Lucent	Verizon, MCI, SBC (Alcatel/Tropic), BellSouth (Tellabs), NTT
Metro (Demux/Switch/Mux)	JDSU, DuPont, OpTun, Chromux, Neophotonics, NEL	Cisco, Tellabs, Hitachi	Comcast, Cox , Brighthouse (Fujitsu), Shaw
Metro (WSS)	JDSU, DuPont, CoAdna, Engana, Metconnex, LichtConnect, Capella	Fujitsu, Meriton	

About 700 ROADM nodes were deployed in 2004, mostly in the second half of the year. The majority of these nodes were 32-channel systems from Fujitsu and Cisco, with the largest deployments being in Japan and North America.

ROADM path lags tunable laser by 2 years

ROADM Types

Wavelength-Blocker-Based Type I ROADM

PLC-Based Type I ROADM

Note: Both express and "Add" channels are balanced with the built-in VOA array

Typical Today:

M = 4, 8

N = 8, 16, 32, 40

Type II ROADM Configurations Full N (or M of N) Reconfigurability

ADD

Transmitters

MxN OXC

DROP

Receivers

NxM OXC

- Can be single PLC 🔺
- Lower IL

Mux

- Easy to upgrade 🔺
- NxM & MxN at A/D give full reconfigurability 🔺
- Integration-friendly
- Small component count 🔺
- Low cost

PLC-Based Type II ROADM

WWN Demux/Switch/Mux Type II ROADM Fully Reconfigurable East/West Separated Architecture

Fully Reconfigurable PLC-Based 8-Channel Demux/Switch/Mux Type II ROADM

Note: Mux and Demux are based on thin film filters

Node Cascading Simulation Layout Cascade of 16 ROADM nodes (32 AWG's)

Simulation tools and assumptions:

- -Rsoft OPTSIM simulation tool is used
- -Measured spectral IL and CD of Flat Top AWG filters are used
- Two optical amplifiers are used at each node
- -Worst case narrowing of ROADM passband due to temperature variation and center frequency inaccuracy of AWG filters is used

Bandwidth of Cascading AWG Filters

Concatenation of Flat-Top AWG Filters

Simulation Conditions (16 Nodes)

	Laser center frequency(THz)	Demux filter 3-dB center (THz)	Mux filter 3-dB center (THz)	ROADM Total Loss (dB)
Run1	194.0000	194.0000	194.0000	10.0
Run2	194.0111	194.0000	194.0000	10.0
Run3	194.0111	194.0050	193.9950	10.0
Run4	194.0111	194.0050	193.9950	20.0

Run 2

Run 3

16

Cascading Simulation Conclusions

2.10E+01

- DuPont PLC ROADM meets bandwidth requirements for 16-node DWDM rings
 - Bandwidth at 0.5dB is over 40 GHz for each ROADM
 - Bandwidth at 0.5dB is over 20 GHz after 16 cascading nodes (32 AWG's)
- DuPont PLC ROADM allows use of low cost, low accuracy lasers for 16node rings
 - Bit error rate (BER) lower than 10⁻¹⁷
 - Lasers with +/-10 shift of center frequency can be used without any system performance degradation after 16 cascading nodes

Parameter	PLC ROADM	λ Blocker ROADM
Number of Channels	≤ 4 0	> 40
Channel Spacing	≥ 100 GHz	< 100 GHz
Insertion Loss (in-out)	< 12 dB	< 11 dB
Insertion Loss (Add-out)	< 10 dB	< 13 dB
Insertion Loss (in-Drop)	< 10 dB	< 10 dB
Add/Drop Time delay	< 10 ms	< 50 ms
PDL (in-out) at min attenuation	< 0.5 dB	< 0.5 dB
Passband Ripple	< 0.3 dB	< 0.3 dB
Size	Two slots	Four slots
Technology Platform	Solid state optics (waveguides)	Free space optics
Stability and Reliability	Excellent	Average
Cost	\$X/2	\$X
Potential for Cost Reduction	High – automated manufacturing	Low – manual assembly

IIII Liquid Crystal & MEMS Based WSS

Advantages of LC vs MEMS WSS

- Mature components and proven technology (same technology as wavelength blockers in commercial use)
- Lower cost (simpler alignment and calibration, high yield)
- No notches between channels (for higher cascadability and upgradability to smaller channel spacing)
- Higher reliability (no moving parts)
- No vibration sensitivity issues
- No sticking and static damage issues
- Telcordia qualified technology platform
- Lower design and supply risk

Performance of 1x4 Liquid Crystal WSS

Typical Interleaved Channel Spectra at Drop Port

Performance of 1x4 Liquid Crystal WSS

Spectra at Different Attenuation Levels

Optical Crossconnects Use in Mesh Networks

Reconfigurable mesh network made up of two interconnected sub-networks, each being an island of transparency

Networks today are not simple ring or mesh, they increasingly include:

- Ring-mesh hybrids
- Stacked rings

Optical Crossconnects Use in Mesh Networks

OXC's are particularly useful in reconfigurable mesh networks where nodes have to route traffic from different directions

Important criteria:

- Non-blocking reconfigurable node
- Reliable configuration (several medium size switch matrices)
- Optical properties (IL, XT, etc.)
- No regeneration, no wavelength conversion

For N fibers (degree N node) and M wavelengths per fiber, M NxN switches are needed

Degree 4 Node for Meshed Architecture

4 Fibers \rightarrow 4x4 Switches 4 λ / Fiber \rightarrow 4 Switches

23

Enabling PLC Technologies

- Polymer Based Integrated Switch-VOA Arrays
 - Add Switch(2x1)/VOA & OXC(8x8, 32x8)
 - Low Loss, Low PDL
 - Low power consumption
 - Wavelength independence
 - Telcordia qualified

Silica Based AWG (Mux/Demux)

- Flat top
- Low loss
- Low CD
- Low PDL
- Tight center frequency accuracy (5 GHz)
- Wide bandwidth (80 GHz at 3 dB)
- Telcordia qualified

Chip-to-Chip Integration

Chip-to-Chip integration:

- Eliminates fiber arrays, reducing cost
- Eliminates space needed for fiber ribbons and splices
- Eliminates excess loss due to pigtailing
- Improves reliability due to reduced number of interfaces

Example: 40ch VMUX

Measured chip-to-chip excess loss: <0.1dB

Dynamic IC Fabrication

DuPont Polymer Photonic IC's Key Properties at 1550 nm

Polymer 1x2 Digital Optical Switches

Low Power Polymer MZI VOA

Polymer-Based 8x8 Intelligent OXC

Intelligent OXC

8x8 Switch (112 1x2 Switches) + 8 Taps + 8 VOAs

Telcordia Qualification

Passed GR-1209-CORE/GR-1221-CORE

Telcordia Tests GR-1209-CORE/GR-1221-CORE	Test Result
Temperature-Humidity Aging (85°C/85%RH, 336 hours)	PASS
Temperature Cycling (-40°C to 85°C, 100 cycles)	PASS
Thermal Shock (0°C to 100°C, 15 cycles)	PASS
Vibration (20-2000 Hz, 3 axes, 4 cycles/axis)	PASS
Mechanical Shock (500 G, 6 directions, 5 times/direction)	PASS
High Temperature Storage (85°C, 2000 hours)	PASS
Lifetest (70°C, 2000 hours, <i>in-situ</i> operation & test)	PASS
Cable Retention (3.4 lb load, 1 minute)	PASS
Fiber Side Pull (0.5 lb load, 90° angle)	PASS

Telcordia Qualification Results

Passed Telcordia qualification with large margin Narrow data distribution around 0 dB IL change Changes are on order of measurement error

IPND Reliability of Polymers and Devices

Highly Accelerated Stress Tests (HAST)

Polymer lifetime well over lifetime of other components in system

Thank You

louay.eldada@usa.dupont.com http://www.photonics.dupont.com